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Abstract

Network models are widely used to represent relational information among interacting units.
In studies of social networks, recent emphasis has been placed on random graph models where
the nodes usually represent individual social actors and the edges represent the presence of
a specified relation between actors. We develop a class of models where the probability of
a relation between actors depends on the positions of individuals in an unobserved “social
space.” Inference for the social space is developed within a maximum likelihood and Bayesian
framework, and Markov chain Monte Carlo procedures are proposed for making inference on
latent positions and the effects of observed covariates. We present analyses of three standard
datasets from the social networks literature, and compare the method to an alternative
stochastic blockmodeling approach. In addition to improving upon model fit, our method
provides a visual and interpretable model-based spatial representation of social relationships,
and improves upon existing methods by allowing the statistical uncertainty in the social space
to be quantified and graphically represented.
KEY WORDS: Network data; latent position model; conditional independence model.



1 Introduction

Social network data typically consist of a set of n actors and a relational tie y; ;, measured
on each ordered pair of actors 7,57 = 1,...,n. This framework has many applications in the
social and behavioral sciences including, for example, the behavior of epidemics, the inter-
connectedness of the World Wide Web, and telephone calling patterns. Quantitative research
on social networks has a long history going back at least to Moreno (1934). The development
of log-linear statistical models by Holland and Leinhardt (1977, 1981), Fienberg, Meyer, and
Wasserman (1985), Wang and Wong (1987), and others represent major advances.

In the simplest cases, y;; is a dichotomous variable, indicating the presence or absence
of some relation of interest, such as friendship, collaboration, transmission of information
or disease, etc.. The data are often represented by an n X n sociomatrix Y. In the case of
binary relations, the data can also be thought of as a graph in which the nodes are actors
and the edge set is {(4,7) : vi; = 1}. When (¢, ) is in the edge set we write ¢ — j. If ties
are undirected, in that y; ; = y;,; for all # # j by logical necessity, we write ¢ ~ j if y; ; = 1.
However, even in the case of directed relations, ties often tend to be reciprocal (v;; = y;
with high probability) and transitive (i — j, j — k = ¢ — k with high probability). As such,
probabilistic models of network relations have typically allowed for some sort of dependence
between ties. For example, the p; model of Holland and Leinhardt (1981) includes parameters
for the propensity of ties to be reciprocal, as well as parameters for the number of ties and
individual tendencies to give or receive ties. However these models are restrictive as they
assume the (Z) dyads (v j,Yy;i) to be independent.

Frank and Strauss (1986) characterized the exponential family of random graph models
by elaborating work of Besag (1974) developed in the context of spatial statistics. These
have been referred to as the “p*” class of models in the psychology and sociology literatures
(Wasserman and Pattison, 1996). Given their general nature and applicability, we shall refer
to them simply as (exponentially parametrized) random graph models. Frank and Strauss
(1986) also proposed models with Markov structure that allow for forms of dyad dependence,
often referred to as homogeneous monadic Markov models. Recent work of Corander et al.
(1998), Crouch, Wasserman and Trachtenberg (1998), Besag (2000), Handcock (2000) and
Snijders (2001) has developed likelihood-based inference for these models based on Markov
Chain Monte Carlo algorithms. Approximate maximum likelihood approaches had been
developed by Frank and Strauss (1986), Strauss and Ikeda (1990), and Wasserman and
Pattison (1996). However the statistical properties of these “pseudolikelihood” estimators
are only partially understood.

Recent works have explored the properties of homogeneous monadic Markov models. Re-



sults in Besag (2000) and Handcock (2000) suggest that commonly used models are more
global than local in structure and this contributes to model degeneracy and instability prob-
lems (Ruelle 1968). These issues are not resolved by alternative forms of estimation but
represent defects in the models themselves - at least to the extent that they are useful for
modeling realistic social networks. These factors have motivated the development of alter-
native models without these restrictions.

For networks in which actors belong to prespecified groups, Wang and Wong (1987)
developed a stochastic blockmodel, an extension of the p; model, which includes parameters
describing differential rates of between-group and within-group ties. For cases in which group
membership is not observed, Nowicki and Snijders (2001) presented a model in which the ties
in a social network are conditionally independent, given the latent class membership of each
actor. In such a model, actors within a latent class are treated as stochastically equivalent,
that is, the events (i; — j1) and (ia — j2) have the same probability if actors i; and j; are in
the same respective latent classes as i and jo. Such a model may prove useful in identifying
clusters of individuals for whom stochastic equivalence holds, that is, clusters of individuals
who relate to all other actors in the system in a similar way. However, models based on
distinct clusters may not fit well when many actors fall between clusters, or when relations
are transitive yet there is no strong clustering.

In some social network data, the probability of a relational tie between two individuals
may increase as the characteristics of the individuals become more similar. A subset of indi-
viduals in the population with a large number of social ties between them may be indicative
of a group of individuals who have nearby positions in this space of characteristics, or “social
space.” Note that if some of the characteristics are unobserved, then a probability measure
over these unobserved characteristics induces a model in which the presence of a tie between
two individuals is dependent on the presence of other ties. Relations modeled as such are
probabilistically transitive in nature: the observation of i« — j and j — k suggests that ¢ and
k are not too far apart in social space, and therefore are more likely to have a tie. In Section
2, we develop a latent variable model for such transitive relations, where it is assumed each
actor ¢ has an unknown position z; in social space. The ties in the network are assumed to be
conditionally independent given these positions, and the probability of a specific tie between
two individuals is modeled as some function of their positions, such as the distance between
the two actors in social space. Estimation of positions is simplified by the use of a logistic
regression model, and confidence regions for latent positions are computable using standard
MCMC algorithms, as described in Section 3. In Section 4, these latent-space models are fit
to a number of standard datasets, and their performance in terms of model fit is compared to

alternative stochastic blockmodels. In addition to improving upon model fit, the results from



our approach are relatively easy to interpret, and modeling the positions as belonging to a
low-dimensional Euclidean space provides a model-based means of graphically representing

social network data.

2 Latent Position Methods

The data we model in this paper consist of an n X n sociomatrix Y, with entries y; ; denoting
the value of the relation from actor 7 to actor 7, and possibly additional covariate information
X. We focus on binary-valued relations, although the methods in this paper can be extended
to more general relational data using ideas from generalized linear models. Both directed
and undirected relations can be analyzed with our methods, although the features of the
model are slightly different in the two cases, as described below.

We take a conditional independence approach to modeling by assuming that the presence
or absence of a tie between two individuals is independent of all other ties in the system,

given the unobserved positions in social space of the two individuals:

P(Y|Z,X,0) = | [ P(visl2i, 2, %14, 0),
i#]
where X and z; ; are observed characteristics which are potentially pair-specific and vector-

valued, and 6 and Z are parameters and positions to be estimated.

2.1 Distance Models

A convenient parametrization of P(y; ;|zi, 2;, i ;, 0) is the logistic regression model in which
the probability of a tie depends on the Euclidean distance between z; and z;, as well as on

covariates z; ; that measure characteristics of the dyad:
ni; = logodds(y;; = 1|2, zj, Zijy @0, B) = a+ B'mi j — |z — 2] (1)

This model has a simple interpretation: for two actors j and k equidistant from 4, the log
odds ratio of i — j versus i — k is f'(2i; — Ti)-

Note that the |z; —z;|’s could be replaced by an arbitrary set of distances {d; ;}, satisfying
the triangle inequality, d;; < d;p + di; V {3,,k}. A semiparametric modeling approach

would impose no further constraints on the distances, and so the parameter space would

n
2

to model the d;;’s as being distances between actors in some low-dimensional Euclidean

include ( ) distances to estimate, subject to the inequality constraints. Generally, we prefer

space for reasons of parsimony and ease of model interpretability.



The latent position model is inherently reciprocal and transitive: if 1 — j and 7 — k, then
d; ; and d, ;, are probably not too large, making more probable the events j — i (reciprocity)
and 7 — k (transitivity). One interesting feature of the model is it provides an essentially
perfect model fit for many social network datasets with undirected relations, in a parameter
space of much lower dimension than that of the data. To explore this feature further,
consider the following reparametrization of (1) in the case of no covariate information and

an undirected relation y; ; = v, ;:
logodds(ys,; = 1|dij, 21, @) = (1 — dy ;). (2)
We say a set of distances {d; ;} represents the network Y if

{di,j >1 Vl,j Y5 = 0} and (3)
{di,j <1Vi,j: Yij = 1} .

For such a set of distances, the probability of the data under parametrization (2) will converge
to unity as @ — 0o. As we will be modeling the distances as being Euclidean distances in
some k-dimensional space, we will say a network is dj-representable if there exist points
z; € R* such that the distances d; ; = |2z; — 2;| satisfy (3). In such a space, dj-representability
is equivalent to being able to find a set of points for the actors such that ¢ ~ j if and only if
1 and j lie within k-dimensional unit balls centered around each other.

It is interesting to note that there are many examples of social networks which are dp-
representable for £ much smaller than n, and even for £ = 2. For example, consider an
n-star network composed of one central actor having ties to n — 1 otherwise unconnected
actors. Such a network is trivially dz_;-representable for any n, by positioning pairs of
non-central actors on either sides of the central actor along one of the n/2 coordinate axes.
As another example, consider an n-chain network, in which there is an ordering of n actors
sothat 1 ~ 2~ 3 ~ --- ~n ~ 1. This network is ds-representable for all n by placing the
actors equidistant from the origin but separated by equal angles. Such results suggest that
distance-based models may provide a good method of data reduction and presentation for
undirected relational data. Although the above examples may seem contrived, in Section 4.2

we analyze a real-life 15 actor network which is dy-representable.

2.2 Projection Methods

The distance model presented above is inherently symmetric, in that p(i — j) = p(j — 7).
However, in many networks such symmetry is not achieved. For example, perhaps actor ¢

sends a large number of ties whereas 7 sends ties to a small subset of the actors receiving
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ties from 7. In this case, we want to model both that ¢ and j are “similar” but that ¢ is
more “socially active”. Such a model could be achieved by including actor-specific activity
parameters, an approach used by by Wang and Wong (1987) to allow for actor-level variability
in their stochastic blockmodel.

Alternatively, variable activity can be modeled parsimoniously in the context of a la-
tent position model which allows for probabilistic transitivity in the relations, as well as
individual-specific levels of social activity. Suppose each actor i has an associated unit-
length k-dimensional vector of characteristics v;. These characteristics can be thought of as
points on a k-dimensional sphere of unit radius. We might imagine that ¢ and j are prone
to having ties if the angle between them is small, neutral to having ties if the angle is a
right angle, and averse to ties if the angle is obtuse. These three situations correspond to
viv; > 0, viv; = 0, and vjv; < 0, respectively. In other words, ¢ and j are more likely to
have a tie if the characteristics of 7 and j are in the same direction, and less likely to have a
tie if they have characteristics in opposite directions. Adding a parameter for each node to
allow for different levels of activity is equivalent to having latent vectors of various lengths:
letting a; > 0 be the activity level of actor i, we can model the probability of a tie from 7 to
j as depending on the magnitude of a;v}v;, or equivalently, zz,/|2;|, where z; = a;v;. This
is the signed magnitude of the projection of z; in the direction of z;, and can be thought
of the extent to which ¢ and j share characteristics, multiplied by the activity level of s.
For convenience, we will parametrize the probability of a tie from ¢ to j using the logistic
regression model as before:
log odds(y; j = 1|2, 2, i j, 0, B) = a+ B'z; j + %
In some situations we may wish to model differential rates of accepting ties. In this case,

the above probability could depend on the latent vectors through z}z;/|z|.

3 Estimation

In contrast to the p* and Markov random graph models, the log-likelihood of a conditional

independence model is relatively simple:

log P(Y[n) = > {mi;yi; — log(1 +€™9)}, (4)

i#j
where 7 is a function of parameters, unknown positions, and perhaps known explanatory
variables. As such, likelihood-based estimation methods, such as maximum-likelihood and

Bayesian inference, are feasible.



The likelihood (4) is strictly concave in the matrix n = {n;;}. Consider first the semi-
parametric model n = 11’ — D, where D is constrained only to be a positive symmetric
matrix of values satisfying the triangle inequality. As the parameter space {«, D} is convex
and 7(a, D) is affine, there is a unique value of @11’ — D maximizing the likelihood (note,
however, that « is confounded with D, as addition of a positive constant to a set of distances
is also a set of distances). Unfortunately, the log-likelihood is not generally concave in {«a, Z}
for either the distance model or the projection model, as the function n = n(«, Z) is not
affine. This makes identification of a global MLE problematic. However, one approach is
to first identify a set of distances, not necessarily Euclidean, which maximize the likelihood
(a convex minimization problem). A set of positions in #* approximating the distances can
then be found using using multidimensional scaling methods. This set of positions can be
used as a starting point in a non-linear optimization routine. A simpler approach which
works well in the examples in this paper is to obtain a set of dissimilarities between nodes
based on an ad hoc measure, such as the Euclidean distances between rows or columns of
the sociomatrix, or the geodesic distance (path length) between the nodes (Wasserman and
Faust 1994). Starting values for the positions can then be found using multidimensional
scaling.

Distances between a set of points in Euclidean space are invariant under rotation, re-
flection, and translation. Therefore, for each k£ X n matrix of latent positions Z there
is an infinite number of other positions giving the same log-likelihood. More specifically,
logPr(Y|Z, o) = log Pr(Y|Z*, @) for any Z* which is equal to Z under the operations of re-
flection, rotation, or translation. A confidence region which includes two equivalent positions
7y and Z, is in a sense overestimating the variability in the unknown positions (although
not overestimating the variability in distances or relative positions, as these are identical for
Zy and Z,). Fortunately, this problem can be resolved by basing inference on equivalence
classes of latent positions: let [Z] be the class of positions equivalent to Z under rotation,
reflection, and translation. For each [Z], there is one set of distances between the nodes. We
call this class of positions a configuration.

We make inference on configurations via inference on particular elements of configurations
which are comparable across configurations. For a given configuration [Z], we select for
inference Z* = argminyy tr(Zy — TZ) (Zy — TZ), where Z, is a fixed set of positions and
T ranges over the set of rotations, reflections, and translations. Z* is a “Procrustean”
transformation of Z, being the element of [Z] closest to Z; in terms of the sum of squared
positional differences, and is unique if Z;Z' is nonsingular (Sibson, 1979). Z* is relatively
easy to compute: assuming Z and Z, are both centered at the origin, Z* is given by Z* =
ZoZ'(Z 2y Zo Z") "2 Z. We will typically take Zy = Z, an MLE of the latent positions centered



at the origin.
Given prior information on «, 3, and Z, our procedure for sampling from the posterior

distribution is as follows:

1. Identify an MLE Z of Z, centered at the origin, by direct maximization of the likeli-
hood.

2. Using Zy = Z as a starting value, construct a Markov Chain over model parameters

as follows:

(a) Sample a proposal Z from J(Z|Z), a symmetric proposal distribution;

p(Y‘Zv7akw3k7X) W(Z)
p(Y|ZkHak7/3k7X) W(Zk)’

(c) Store Zyy1 = argmingy,,, tr(Z — TZy1)'(Z — T Zg11).

(b) Accept Z as Zj,, with probability otherwise set Zy 1 = Z;

3. Update o and 8 with a Metropolis-Hastings algorithm.

Since each configuration can be represented by its unique Procrustean statistic, the posterior
distribution of the configuration around Z is represented by samples of Z from the Markov
chain.

The computational details for the projection model are the same as above, except that
the likelihood is invariant under rotation and reflection of positions, but not translation.
Therefore, the only modification to the above is to let Zkﬂ = argmingyz, tr(Z—TZk+1)’(Z—

TZk.1), where T ranges over the set of rotations and reflections.

4 Examples

We analyze three standard datasets from the social networks literature: Sampson’s (1968)
Monk data, Padgett and Ansell’s (1993) data on marriage relations between Florentine

families, and Hansell’s (1984) classroom data.

4.1 Monk Data

Sampson (1968) collected data on a variety of interpersonal relations among 18 monks. Of
particular interest has been the data on positive affect relations, in which each monk was
asked if they had positive relations to each of the other monks. Based on the network and
other data, Sampson originally classified each monk as belonging to one of four groups; the
Loyal Opposition (monks 2-6) ; the Young Turks (monks 8-14) ; the Qutcasts (monks 16-18);
and the Waverers (monks 1,7,15). Subsequent data analyses have placed monks 1 and 7

with the Loyal Opposition, and monk 15 with the Outcasts.
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These data are standard in the social network analysis literature, having been modeled
by Holland and Leinhardt (1981), Reitz (1982), Holland, Laskey and Leinhardt (1983), and
Fienberg, Meyer, and Wasserman (1981). Wang and Wong (1987) extended these models
by allowing for individual level variation in relations as well as group-level preferences for
ties, and obtained a substantially improved fit. Specifically, their stochastic blockmodel
modeled each pair {y; ,y,:} as depending on parameters for actor-specific rates of sending
and receiving ties, a parameter representing mutuality of ties, and a parameter representing
the preference of actors to send ties to members of their own group. Note that Wang and
Wong took the group membership information as given, even though it was derived to some
extent from the data.

The relations between the monks are somewhat transitive: the number of non-vacuously
transitive ordered triples (i — j, j — k, i — k) is 49. In 500 random reallocations of ties,
holding the number of ties sent by each actor constant, the largest number of non-vacuously
transitive triads was 35. The distance model we fit to the data takes advantage of this
transitivity, and achieves a better fit than Wang and Wong’s model, using fewer parameters
and not presuming the a priori existence of distinct groups. Our model is the distance model

presented in Section 2.1,

P(Y|a7 Z) = Hp(yi,j|a,2i,zj) (5)
i#]
logit p(yi; = 1o, 2i,25) = a— |z — 2,

where the z;’s lie in #2. Note that the probability of the data depends only on the distances,
which are invariant under reflection, rotation, and location shift. As a result, three of the
18 x 2 model parameters can be fixed, so this model has 33 + 1 = 34 parameters (including
Q).

The distance between each pair of nodes was first calculated as the average of the two
directed path lengths between each pair. Crude estimates of latent positions were then found
using multidimensional scaling, and the results were used as starting values for the non-
linear minimizer optim in the R statistical programming environment. Random sampling of
starting values from a normal distribution produced identical results.

As shown in Table 1, the maximized log-likelihood is -66.02 with 34 parameters, compared
to the maximized log-likelihood of the stochastic blockmodel fit of -82.12 with 37 parameters
(Wang and Wong, 1987). The improvement of the position-based model over the stochastic
blockmodel of Wang and Wong suggests that, since relationships are indeed transitive to
some extent, modeling them as such leads to an improvement in model fit. The maximum

likelihood estimates of monk positions from the distance model are shown in the panel (a)
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Table 1: Model fitting results for the monk data

Model H Maximized log-likelihood ‘ # parameters
Distance model -66.02 34
Stochastic blockmodel || -82.12 37

Figure 1: Maximum likelihood estimates (a) and Bayesian marginal posterior distributions
(b) for monk positions. The direction of a relation is indicated by an arrow.

(@) (b)

of Figure 1

The conditional independence model lends itself relatively easily to a Bayesian analysis:
priors can be formulated for o and Z, and posterior inference can be made about each. In
particular, this provides a means of making confidence regions for the positions of the actors
in social space. Using diffuse independent normal priors for o and Z, having means of zero
and standard deviations of 100, a Bayesian analysis was performed via 2.5 x 108 scans from
a Markov chain as described in Section 3. The chain mixes reasonably quickly in the z;’s,
but quite slowly in « as shown in panel (b) of Figure 2. Output from the chain was saved
every 2 x 103 scan, and positions of the different monks are plotted for each saved scan in
panel (b) of Figure 1 (the plotting color for each monk is based on their mean angle from the
positive z-axis and their mean distance from the origin). The categorization of the monks
given at the beginning of this section is validated by the distance model fitting, as there is
little between-group overlap in the posterior distribution of monk positions. Additionally,

this model is able to quantify the extent to which some actors (such as monk 15) lie between



Figure 2: MCMC diagnostics for the monk analysis
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other groups of actors.

4.2 Florentine Families

Padgett and Ansell (1993) compiled data on marriage and business relations between 16
historically prominent Florentine families, using a history of this period given by Kent (1978).
We analyze data on the marriage relations taking place during the 15th century. The actors
in the population are families, and a tie is present between two families if there is at least
one marriage between them. This is an undirected relation, as the respective families of the
husband and wife in each marriage were not recorded. One of the sixteen families had no
marriage ties to the others, and was consequently dropped from the analysis (if included,
this family would have infinite distance from the others in a maximum likelihood estimation,
and a large but finite distance in a Bayesian analysis, as determined by the prior).
Modeling d; ; = |z; — 2|, 2i,2; € R? and using the parametrization 7; ; = a(1 — d; ;) as
described in Section 2, the likelihood of (o, Z) can be made arbitrarily close to 1 as o — oo
for fixed Z = Z , 1.e. the data are dy-representable. Such a representing 7 is plotted in panel
(a) of Figure 3. Family 9 is the Medicis, whose average distance to others is greater only
than that of families 13 and 16, the Ridolfis and Tornabuonis. Another dj-representation
is given in the panel (b) of Figure 3. This configuration is similar in structure to the first,
except that the segments 9-1 and 9-14-10 have been rotated. This is somewhat of an artifact
of our choice of dimension: when modeled in three dimensions, 1 and 14 are fit as being

relatively equidistant from 6.
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Figure 3: Panels (a) and (b) are alternate dy representations of the Florentine family data.
Panel (c) gives marginal posterior distributions of family positions.
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Figure 4: MCMC diagnostics for the Florentine family analysis
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One drawback of the MLE’s presented above is that they overfit the data in a sense, as the
fitted probabilities of ties are all either 0 or 1 (or nearly so, for very large «). Alternatively,
a prior for « can be formulated to keep predictive probabilities more in line with our beliefs;
for example, that the probability of a tie rarely goes below some small but not infinitesimal
value. Using the MCMC procedure outlined in Section 3, the marriage data were analyzed
using an exponential prior with mean 2 for o and diffuse independent normal priors for the
components of Z (mean 0, standard deviation 100). The MCMC algorithm was run for
5 x 10° scans, output being saved every 5000 scans. This chain mixes much faster than that
of the monk example, as is shown in the diagnostic plots of Figure 4. Marginal confidence
regions are represented by plotting samples of positions from the Markov chain, shown in
panel (c¢) of Figure 3. Note that the confidence regions include both the configurations given
in the first two panels of Figure 3: actors 14 and 10 (in red and purple) are above or below
actor 1 (in green) for any particular sample; the observed overlap of these actors in the
figure is due to the bimodality of the posterior and that the plot gives the marginal posterior

distributions of each actor.

4.3 Classroom Data

Hansell’s (1984) data measure the existence of strong friendship ties between 13 boys and
14 girls in a sixth-grade classroom. Each student was asked if they liked each other student
“a lot”, “some”, or “not much”. A strong friendship tie is considered present if a student
likes another student “a lot”.

The number of ties sent by each student varies considerably, ranging from zero to 19
with a mean of 5.8 and a standard deviation of 4.7 (the standard deviation of the number
of ties received was 3.2). For this reason, we choose to analyze the data using the projection
model described in Section 2.2, which allows for a variable rate in sending ties across stu-
dents. Additionally, 72% of the ties are same-sex, indicating that the friendship relation is
more prevalent within sex. Finally, the relations are transitive, in that the number of non-
vacuously transitive ordered triples is 400, compared to a maximum of 347 in 500 random
reallocations of ties, holding constant the number of ties sent by each student.

To illustrate the features of the projection model, we fit models both with and without
covariate information on the sex of the students, that is, we consider both of the following

formulations:
Projection model, no covariate: logit(p; ;) = o+ 22,/ |2;]|.

Projection model, one covariate: logit(p; ;) = o + Bz, ; + ziz;/|%;].

12



Table 2: Model fitting results for classroom data

Model H Maximized log-likelihood ‘ # parameters
Projection, with covariate || -224.58 55
Stochastic Blockmodel -227.57 55
Projection, no covariate -229.05 54

Figure 5: Maximum Likelihood Estimates of Student Positions, and Posterior of 5.

0.8

p(beta)
0.6

05 10 15 20 25 30
beta

(a) (b) (©)

The covariate z; ; is the indicator of actors ¢ and j being of the same sex. We also compare
these models to the stochastic blockmodel fit of Wang and Wong (1987).

Distance estimates for both models were first obtained by calculating the average of the
directed path lengths between each pair. Crude positions in a single dimension were found
using Sammon’s (1969) non-linear mapping. These positions were converted into positions
on a circle, which became the starting values of the latent vectors in the optimization routine.
Randomly sampled starting values gave the same optimum fit, given in Table 2. The projec-
tion model with sex as a covariate gives the best fit, with the coefficient 8 being nominally
significant based on a likelihood ratio test.

Fitting the model without the covariate information on sex gives the estimates of positions
shown in panel (a) of Figure 5. Here the students are plotted along the circumference of a
circle according to the angle of their latent vector, and the size of the plotting character for
a student is increasing in the magnitude of their vector. The model identifies two somewhat
orthogonal groups of actors, falling on vectors emanating from the origin, one consisting
of mostly boys (O), and the other girls (0) (the difference between boys’ and girls’ median
angles, plotted in dashed lines, is 76 degrees).

Note that if the sexes were separated by 180 degrees, then based on the model it would

13



be improbable for actors to have ties to both boys and girls, which is something that is not
completely uncommon in the data. By having the group vectors separated by 76 degrees, the
model predicts ties between the sexes as being rare, although it allows for a non-negligible
probability of some actors sending ties to both groups, or even sending ties primarily to
members of the opposite group.

A further application of the projection model is as a means of identifying boys and girls
who may be in similar social groups, after having accounted for the fact that the frequency of
between-sex friendship ties is low. The estimated positions after having partially accounted
for this known covariate structure are shown in panel (b) of Figure 5. Note there is still
considerable separation of the sexes, although the difference in median angles has been
reduced to 60 degrees. This suggests that the single covariate z;; does not fully explain the
different rates of within and between sex friendship ties. A “full” model would have different
baseline rates for the four different types of ties (boy—boy, boy—girl, girl—girl, girl—boy).
Indeed, inclusion of these parameters reduces the median angle between the sexes to 13
degrees. We present only the model with the single covariate, as this data analysis is meant
primarily as an illustrative example.

The above model could be also be used as a means of making inference on the preference
for within-sex friendship ties: a naive approach to inference would be to treat each possible
tie as a Bernoulli random variable, independent of the other ties. Using logistic regression,
we would estimate the log-odds ratio of a between-sex pair being friends compared to that
of an within-sex pair as 1.3, with a standard error of 0.2. Of course, we would expect a
confidence interval based on such an analysis to be too small, as ties between individuals
are not independent, unconditional on the latent positions. As an alternative, a Bayesian
analysis was performed as outlined in Section 3. A Markov chain of length 5 x 10° scans was
constructed, starting at the MLE. Output was saved every 1000 scans, which was then used
to make marginal posterior inference on 5. The marginal posterior density of 3 is given in
panel (c¢) of Figure 5, in which the solid vertical line represents the MLE from the projection
model, and the dashed lines represent the MLE plus and minus two standard errors, based
on an ordinary logistic regression. As we expect, a 95% confidence region from the Bayesian

analysis would be longer than the one based on the ordinary logistic regression.

5 Discussion

This article proposes a new model for social networks based on spatial representation, for
which maximum likelihood and Bayesian inference are practical to implement. The approach

has some advantages over existing social network models and inferential procedures. First,
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the proposed method provides a visual, interpretable model-based spatial representation of
network relationships. Second, it improves on existing methods by allowing the statistical
uncertainty in the social space to be quantified and graphically represented. Third, it is
flexible and can be easily generalized to allow for multiple relationships, ties with varying
strengths (using generalized linear models), and time-varying relations (by modeling the
latent positions as stochastic processes). Fourth, it deals easily with missing data, at least if
information on ties is missing at random: the likelihood includes only terms corresponding to
observed ties. Finally, the model is inherently transitive, and so we can expect an improved
fit over models lacking such structure (such as the stochastic blockmodel) when the relations
are transitive in nature.

The choice of a prior distribution for latent positions was not discussed at length in this
paper. Although simple, the diffuse independent normal priors presented in the examples
may not accurately represent prior beliefs about the structure of social networks. More ap-
propriate might be clustered point processes or mixtures of normals with an unknown number
of components. This would add another level of hierarchy to the analysis, although the re-
sulting model would be more flexible and perhaps more accurately represent any tendencies
of populations to form segregating groups.

As an alternative to the models presented in this article, multiple dimensional scaling
(MDS) is widely used as a means of representing the spatial structure of a social network
(Breiger, Boorman and Arabie 1975; Faust and Romney 1985). In this context, MDS is a
class of methods that can be used to produce a spatial representation of individuals based
on similarity or dissimilarity measures between pairs of individuals. Such applications of
MDS differ from the models presented here in that MDS is used primarily as a data-analytic
means of visualizing given dissimilarities while this method is a model-based representation
of the measured relations and latent positions (although recently DeSarbo, Kim, and Fong
(1999) and Oh and Raftery (2001) have developed model-based MDS applicable to two-mode
networks within a Bayesian framework). Our model has a number of advantages over MDS.
First, our method directly models the response, while the usual choices for dissimilarities
in MDS are ad hoc and do not reflect the stochastic nature of the sociomatrix. Second,
current versions of MDS use maximum likelihood or other optimization methods over large
numbers of parameters (e.g., linear in the number of individuals). The asymptotic properties
of these methods are largely unknown, and the uncertainty in the latent positions is difficult
to quantify. To avoid this some versions of MDS assume that individuals can be grouped
into homogeneous clusters- so-called latent class MDS (Lazarsfeld and Henry 1968, DeSarbo
et al. 1994). However, individual-specific variability in relative position is often the primary

focus in the social network context, something which can be quantified in an interpretable
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way via a Bayesian analysis of one of the position-based models discussed in this article.
R-code for implementing the proposed methods will be available through the first author’s

website: www.stat.washington.edu/hoff.
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